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Abstract. The rapid development of mobile devices has stimulated the
popularity of spatial crowdsourcing. Various spatial crowdsourcing plat-
forms, such as Uber, gMission and Gigwalk, are becoming increasingly
important in our daily life. A core functionality of spatial crowdsourcing
platforms is to allocate tasks or make plans for workers to efficiently fin-
ish the published tasks. However, existing studies usually ignore the fact
that tasks may impose different skill requirements on workers, which may
lead to decreased numbers of accomplished tasks in real-world applica-
tions. In this work, we propose a practical problem called TOTP, T eam-
Oriented Task P lanning, which not only makes feasible plans for workers
but also satisfies the skill requirements of different tasks on workers. We
prove the NP-hardness of TOTP, and propose two greedy-based heuristic
algorithms to solve the TOTP problem. Evaluations on both synthetic
and real-world datasets verify the effectiveness and the efficiency of the
proposed algorithms.
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1 Introduction

With the rapid development of mobile and intelligent devices, spatial crowd-
sourcing platforms, such as Uber, gMission [3] and Gigwalk, are gaining increas-
ing popularity. Different from traditional crowdsourcing platforms, tasks pub-
lished on spatial crowdsourcing platforms require workers to travel to specific
locations to accomplish the tasks.

A fundamental issue in spatial crowdsourcing is the planning problem [12,14],
which refers to making traveling plans for workers to efficiently finish the pub-
lished tasks under constraints such as travel budgets and completion time. We
argue that such a problem formulation is impractical, because the tasks on real-
life spatial crowdsourcing platforms often come with various requirements. Con-
sequently, only workers with the desired skills are able to accomplish the corre-
sponding tasks. Imagine the following scenario. There is a spatial crowdsourcing
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platform which provides domestic services. Currently it has three tasks: the first
one needs cleaning and tutoring from 3:00 p.m. to 5:00 p.m.; the second requires
babysitting and cleaning from 4:00 p.m. to 6:00 p.m.; and the third needs cook-
ing from 6:00 p.m. to 7:00 p.m. There are also some workers on the platform:
Paul is skilled at cleaning and babysitting, David is good at cooking and Lucy is
skilled at tutoring. Note that it is non-trivial for a single worker, such as Paul or
David, to accomplish the requirement of the above tasks. It is also difficult for the
platform to make plans for the workers under the spatial and time constraints.

Existing solutions to the planning problems in spatial crowdsourcing do not
consider the skill requirements, spatial and time constrains simultaneously. In
the above scenario, existing studies will assign the first task to Paul, which will
not be completed. To jointly account for the skill requirements of tasks and the
spatial and time constraints, our key insight it to assign a team of workers to
fulfil all the requirements. We propose TOTP, a Team-Oriented Task Planning
problem to maximum the total satisfaction of the workers. Note that we use
skills to represent the specific requirements of tasks on workers. We illustrate
the motivation of TOTP with the following example. In this example, the skills
are denoted as {e1, · · · , e4}.

Table 1. Basic information of tasks and workers in Example 1

Workers Tasks

No Owning skills Travel budget No Required skills Capacity Time period

w1 {e2, e4} 24 t1 {e2, e3} 2 [5,6]

w2 {e3} 20 t2 {e2} 2 [1,3]

w3 {e3, e4} 19 t3 {e2, e4} 1 [7,8]

w4 {e1, e2} 21 t4 {e1, e2, e3} 2 [2,4]

w5 {e1, e4} 23

Table 2. Satisfaction between tasks and workers in Example 1

w1 w2 w3 w4 w5

t1 1 3 2 1 5

t2 2 3 2 1 4

t3 5 2 3 4 1

t4 4 4 2 1 6

Example 1. Suppose we have five workers w1–w5 and four tasks t1–t4 on a spatial
crowdsourcing platform. The locations of the workers and the tasks are shown
in the 2D space in Fig. 1a. We use Euclidean distance in this example. Table 1
shows the attributes of the workers and the tasks. The skills of the workers
and the distances that he/she would like to travel are shown in the second
and third columns. The skill requirements of tasks on workers are shown in
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Fig. 1. Example 1

the fifth column. Capacity shows the maximum number of workers that can
participate in the corresponding task. The last column in Table 1 shows the
completion time, which is the duration that the assigned worker needs to stay at
the task’s location. Table 2 shows the satisfaction of workers, which represents
the workers’ preferences on the tasks. The spatial crowdsourcing platform has to
make assignments between the workers and tasks such that the skill requirements
of tasks are satisfied and the total satisfaction is maximized. Figure 1b shows a
global task planing, i.e. {t1, t3} for w1 and {t4, t1} for w2, respectively. Notice
that t1 can be accomplished by a team of w1 and w2.

Contributions. We propose a more realistic planning problem in spatial crowd-
sourcing called the T eam-Oriented Task P lanning problem (TOTP). As the
example indicates, the TOTP problem not only makes plans for each worker but
also attempts to satisfy the skill requirements of different tasks. To summarize,
our contributions are as follows.

– We identify TOTP, a new spatial crowdsourcing planning problem that
accounts for the skill requirements of tasks on workers.

– We prove that the TOTP problem is NP-hard.
– We propose two greedy algorithms to solve the TOTP problem, and analyze

the complexity of both algorithms.
– We verify the effectiveness and efficiency of the proposed algortihms through

extensive experiments on synthetic and real-world datasets.

In the rest of the paper, we review related work in Sect. 2, formulate the
TOTP problem and prove its NP-hardness in Sect. 3. Section 4 presents our
algorithms on TOTP problem and Sect. 5 show the experimental evaluations.
Finally we conclude this paper in Sect. 6.
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2 Related Work

Our TOTP problem is closely related to two categories of research: spatial crowd-
sourcing and team formation.

2.1 Spatial Crowdsourcing

The task assignment problem is fundamental in spatial crowdsourcing. Many
efforts aim to maximize the total number or total utility of tasks that are assigned
to workers in static scenarios [9,19]. Others study the conflict-aware spatial task
assignment problems [14,15,22]. Recently, the problem of online task assignment
in dynamic spatial crowdsourcing was first proposed by [21], and several variants
of online task assignment in dynamic scenarios were also studied in [16,17,20].
Other practical issues such as location privacy protection of workers have also
been explored [18]. In addition, [6] introduced the route planning problem for
a worker and attempt to maximize the number of complete tasks, while the
corresponding online version of [6] is investigated in [11]. [7] studies to assign
workers under the spatial and time constraints. [3] summarizes the challenges
and opportunities in spatial crowdsourcing. Despite the extensive research efforts
on task assignment in spatial crowdsourcing, they all assume simple and homoge-
nous tasks without considering the situations where the tasks are complex and
require a team of workers to finish.

2.2 Team Formation

The team formation problem is first proposed by Lappas et al. [10], which aims
to find the minimum cost team of experts according to the skills and relation-
ships of users in social networks. Notice that the team formation problem can
be reduced from typical NP-complete problems, indicating that the team for-
mation problem is NP-hard. [1] focuses on minimizing the maximum workload
when forming teams to cover the skills, and studies both the off-line and on-line
settings. [13] studies the team formation problem with capacity constraints on a
social network, and presents approximation algorithms with provable guarantees.
[2] studies the online team formation problem called the Balanced Social Task
Assignment problem, and proposes an online algorithm with provable guarantee.
In [8], based the skills of crowd workers, the authors study how to recommend k
teams for spatial crowdsourcing tasks. Furthermore, Cheng et al. also proposed
the issue of team-oriented task assignment in spatial crowdsourcing recently [5].
The above studies only focus on satisfying the skill requirements. They neither
consider the location information and travel budgets, nor address the problem
of how to make feasible plans for workers.

3 Problem Statement

In this section we formally define the Team-Oriented Task Planning (TOTP)
problem and prove that the problem is NP-hard. We assume E = <e1, · · · , em>
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as a universe of m skills throughout this paper. Let T be a set of tasks. Each task
t has its own location lt that requires the assigned workers to travel to. The task
t’s skill requirement is represented by a subset of E: Et = {e1, · · · , e|Et|}. We
also define a time interval [st1, s

t
2], which is the starting time and the ending time

of the corresponding task t. Note that the assigned workers need to stay at lt
during this time interval. In real-life applications, the number of workers to finish
a task is normally limited. Hence we define the task’s capacity ct as the maximum
number of workers allowed for the task. We define W as a set of workers. Each
worker w has his/her starting location lw, a set of skills Ew = {e1, · · · , e|Ew|}
and a travel budget Bw, which represents the total travel cost that the worker
w would like to spend to accomplish the tasks, which can be money, distance or
time.

Definition 1 (Crowd Worker). A crowd worker (“worker” for short) is
denoted as w = <lw, Ew, Bw>, where lw is the starting location of worker w
in the 2D space, Ew is a set of skills that the worker is good at, and Bw is the
travel budget that the worker w would like to spend to accomplish the tasks.

Definition 2 (Crowdsourced Task). A crowdsourced task (“task” for short)
is denoted as t = <lt, Et, Int, ct>, where lt is the location in the 2D space that
workers have to travel to, Et is the task’s required skills, Int = [st1, s

t
2] represents

the task’s time interval during which the task should be accomplished and ct is
the capacity of the task that limits the number of the workers assigned to the
task.

For each worker w, we define Pw = {tw1 , tw2 , · · · , tw|Pw|} as the plan of the arranged
tasks in time order. Suppose that ti and ti+1 are two tasks in Pw, a plan is feasible
if there is no time conflict among the arranged tasks, and the workers can perform
ti+1 in time after finishing ti. To evaluate the travel cost between any two tasks,
such as ti and tj , we use cost(lti , ltj ) to represent the travel cost between ti and
tj . If a worker cannot perform the next task in time, the cost between these
two tasks will be ∞. Meanwhile, we define u(w, t) as the satisfaction between
task t and worker w, and U(w) =

∑
ti∈Pw

u(w, ti) as worker w’s satisfaction on
Pw. Finally we give the definition of feasible plan and the Team-Oriented Task
Planning (TOTP) problem.

Definition 3 (Feasible Plan). A plan Pw is feasible if and only if: sti2 ≤
s
ti+1
1 ,∀1 ≤ i ≤ |Pw| − 1.

Definition 4 (Team-Oriented Task Planning (TOTP) Problem). Given
a set of tasks T = {t1, t2, · · · , t|T |} and a set of workers W = {w1, w2, · · · , w|W |}
with their associated attributes, the Team-Oriented Task Planning (TOTP) prob-
lem is to find feasible plans A = ∪w{Pw} for workers with the maximum utility
cost: Utility(A) =

∑
wi∈W U(wi), such that the following constraints are satis-

fied:

– Skill constraint: each required skill of the tasks is covered by the assigned
workers.
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– Travel budget constraint: a worker’s total travel cost is under his/her travel
budget.

– Capacity constraint: the number of workers assigned to a task is lower than
the task’s capacity.

Theorem 1. The Team-Oriented Task Planning problem is NP-hard.

Proof. We prove that the Team-Oriented Task Planning problem is NP-hard
by reducing the knapsack problem, a well known NP-complete problem, to the
TOTP problem. An instance of the knapsack problem consists of a set of n items
{x1, · · · , xn} where each item xi has its value vi > 0, weight mi > 0, and the
maximum weight M that the bag can carry. The decision version of the knapsack
problem asks whether there is a collection of items C = {xs1 , xs2 , · · · , xsk}
such that

∑k
i=1 vsi = K and

∑k
i=1 msi ≤ M . We construct an instance of the

knapsack problem using an instance of the TOTP problem as follows (Table 3).

Table 3. Summary of symbol notations

Notation Description

w Worker

t Task

ct Capacity of t

lw(lt) Location of w(or t)

T Set of tasks

W Set of workers

Bw Budget of w

Ew(Et) Skill set of w(or t)

Pw Plan of w

A = ∪w{Sw} The total plan

u(t, w) Satification between t and w

U(w) =
∑

t∈Pw
u(w, t) w’s satification on Pw

Utility(A) =
∑

w∈W U(w) The total satification of A

– Let |W | = 1,W = {w}, and Bw = M .
– Let Et = Ew,∀w ∈ W and ∀t ∈ T .
– Each item corresponds to a task in TOTP problem. u(w, ti) = vi

max vi
,∀1 ≤

i ≤ n and the capacities of all the tasks equal to 1.
– Let sti2 <s

ti+1
1 ,∀1 ≤ i<n .

– The travel cost of worker w and task ti is set as: cost(w, ti) = mi

2 .
– The travel cost between two events is constructed as:

cost(lti , ltj ) =

{
mi+mj

2 1 ≤ i < j ≤ n

+∞ otherwise
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Thus, the problem is to decide if there is a feasible plan Pw for w such that∑
ti∈Pw

u(w, ti) = K
max vi

satisfying all the constraints. We can see that if the col-
lection exists, then the plan Pw is feasible, and it satisfies that

∑
ti∈Pw

u(w, ti) =
K

max vi
and the total travel cost is less than M . That is, if the plan Pw exists,

then there is a collection C satisfying the constraints on the sum of values and
weights. ��

4 Algorithms of TOTP Problem

In this section, we present two greedy-based algorithms to solve the TOTP
problem.

4.1 Rarest Skill Priority Algorithm

We first present a greedy algorithm called the Rarest Skill Priority Algorithm.
The Rarest Skill Priority Algorithm recursively selects such skills that are
required by numbers of tasks but only few workers have such skills. We call
such skills rarest skill. The reason why we choose rarest skills in priority is to
avoid the case where the workers possessing the rare skills have been assigned
to other tasks and the tasks requiring these skills would never be accomplished.
The rarest skills are calculated by arg maxe∈E

|{t|e∈Et}|
|{w|e∈Ew}| . Then, if a number of

workers or tasks own/require the rarest skill, we greedily make an assignment of
a pair of (worker, task) such that the utility gain is the largest. The utility gain
is defined in Eq. 1.

ratio(w, t) =
u(w, t)

inc cost(w, t)
(1)

where inc cost(w, t) =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cost(lw, lt) Pw = ∅

cost(lw, lt) + cost(lt, ltw1 )
−cost(lw, ltw1 ) st2 < s

tw1
1

cost(ltwi , lt) + cost(lt, ltwi+1
)

−cost(ltwi , ltwi+1
) s

twi
2 < st1, s

t
2 < s

ti+1
1

cost(ltw|Pw| , lt) s
tw|Pw|
2 < st1

∞ otherwise

(2)

Equation 1 defines the ratio between the satisfaction and the additional travel
cost. With a larger ratio(w, t), the task t is more suitable for w since he/she has
a larger satisfaction and less travel cost. In Eq. 2, inc cost(w, t) is the additional
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Algorithm 1. Rarest Skill Priority Algorithm
input : A set of workers W , a set of tasks T and their associated attributes
output: A = ∪w{Pw}
1: H ← ∅
2: for erare = arg maxe∈E

|{t|e∈Et}|
|{w|e∈Ew}| do

3: Wrare = {w|erare ∈ Ew}
4: Trare = {t|erare ∈ Et}
5: for ti ∈ Trare do
6: w = arg maxw∈Wrare ratio(w, ti)
7: H ← (w, ti)
8: end for
9: while H �= ∅ do

10: Pop (w, t) from H with the largest ratio
11: Add t to Pw if {t}⋃Pw is feasible and t is not full of capacity
12: Et = Et − Ew

13: Update (w, t) in H for each t
14: end while
15: end for

travel distance when inserting task t to plan Pw = {tw1 , tw2 , · · · , tw|Pw|}. The details
of inc cost(w, t) are shown in Eq. 2. If Pw is an empty set, the worker only needs
to travel to lt to perform the task. Otherwise, when the starting time of t is
earlier than that of the first task of Pw, we can insert t into Pw as the first task.
Hence the additional travel cost is cost(lw, lt) + cost(lt, lwt1) − cost(lw, lwt1). When
t’s time interval is between task twi and twi+1 in Pw (∀1 ≤ i ≤ |Pw| − 1), we insert
the task t in-between and the worker needs to travel to lt after finishing task twi .
Thus the additional cost is cost(ltwi , lt)+cost(lt, ltwi+1

)−cost(ltwi , ltwi+1
). Finally, if

task t’s starting time is after the last task’s ending time, we define the additional
cost as cost(ltw|Pw| , lt).

Algorithm 1 shows the pseudo-code of the Rarest Skill Priority Algorithm.
Specifically, when making plans for the workers possessing the rarest skills, we
use a heap H to store the worker-task pair (w, t) with the largest ratio for each
task in a decreasing order. Then we can pop the pair on the top of H and add
it into the worker’s plan. In Algorithm1, we first initialize the heap H (Line 1).
Then we find the rarest skill, and the set of workers Wrare and tasks Trare that
require/own the rarest skill (Lines 2–4). We traverse the set Trare and add the
pair with the largest ratio (calculated by Eq. 1) into the heap H for each task
(Lines 5–8), pop the pair (w, t) with the largest ratio in H, and add task t to w’s
plan if it is feasible (Line 10). Afterwards, we update the skill requirement of t
to compute the next rarest skill. Because the additional travel cost of the pair
associated with w has changed, we need to update the pairs in H (Line 13) for
the next iteration. We pop the top pair with the largest ratio until H is empty,
and we continue the loop for finding the rarest skill and making assignments
(Lines 2–15).
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Example 2. Back to Example 1, we first traverse the tasks t1 − t4 and work-
ers w1 − w5, and find that e2 is the rarest skill. Then we make assignment
between Wrare = {w1, w4} and Trare = {t1, t2, t3, t4}. For each task t in Trare,
we find the worker who has the largest ratio with him/her in Wrare and push
the worker into the heap. In the first iteration, the ratios are shown in Table 4.
We choose the pair with the largest ratio for each task and build the heap
H = {(w1, t1), (w4, t2), (w1, t3), (w1, t4)}. We pop the largest pair (w1, t3) with
the ratio 0.51 and add t3 to w1’s plan. Then we update the pair for t1, t2, t4 in
H and finally in this iteration we get {(w1,t3),(w1,t1),(w4,t2),(w4,t4)}. In the
following iterations we repeat the process and finally we get {t1, t3, t4} for w1,
{t1, t2} for w4 and {t4} for w5.

Table 4. Ratios in the first iteration

t1 t2 t3 t4

w1 0.33 0.34 0.51 0.49

w4 0.28 0.35 0.50 0.20

Complexity Analysis. In the worst case, Algorithm 1 has to traverse all the
skills to cover the requirement. During each iteration, we traverse the rest of
skills to find the rarest skill whose time cost is O(|E|(|W | + |T |)). Then for each
task in Wrare we spend O(|W ||T |) to find the (worker, task) pair with the largest
ratio. Searching through and updating the heap take about O(|W ||T |). Thus the
time complexity of Algorithm 1 is O(|E|2(|W | + |T |) + |E||W ||T |) in the worst
case, where |E| is the number of all skills. The memory cost of Algorithm 1 is
mainly to store the heap and the plans for workers, which is O(|W ||T |).

4.2 Skill Cover and Utility Priority Algorithm

In this subsection, we present another solution to the TOTP problem, which
is called the Skill Cover and Utility Priority Algorithm. In the Skill Cover and
Utility Priority Algorithm, we first attempt to cover all the skills of a task like
the team formation problem. Specifically, for each task we attempt to form a
team to satisfy the skill requirement with a minimal team size. If the team size
is smaller than the capacity, in the second step we greedily assign the worker
with the largest satisfaction to the tasks. Finally we can obtain a team for the
task and satisfy the skill requirements of the tasks.

Algorithm 2 presents the details of the Skill Cover and Utility Priority Algo-
rithm. In lines 1–3, we first sort tasks in an increasing order of staring time and
initialize timew for each worker, which records the available time of the worker.
Then we traverse the set of tasks. In line 6 we use function Dis(.) to compute
the total travel cost of the plan and pick up the set of workers W ′ who can par-
ticipate in task t. In lines 7–11 we initialize the team g and choose the worker
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Algorithm 2. Skill Cover and Utility Priority Algorithm
input : A set of workers W , a set of tasks T and their associated attributes
output: A = ∪w{Pw}
1: sort(T )
2: for w in W do
3: timew = 0
4: end for
5: for t in T do
6: W ′ = {w|w ∈ W and Dis(Pw ∪ {t}) ≤ Bw and timew ≤ st1}
7: g = ∅
8: while g cannot cover Et do
9: w = argmaxw∈W ′{|Et ∩ Ew|}

10: g = g + {w}
11: end while
12: while |g| < ct do
13: w = arg maxw∈W ′−g u(w, t)
14: g = g + {w}
15: end while
16: for w in g do
17: Add t to Pw

18: Bw = Bw − cost(w, t)
19: lw = lt
20: timew = st2
21: end for
22: end for
23: return A = ∪w{Pw}

who has the most required skills and add him/her to team g. Then if the size
of g is smaller than ct, we add workers with the largest satisfaction to the team
until the task’s capacity is fully occupied. Finally, we update the workers’ plans,
budgets, current locations and timew in lines 16–21 and continue the iteration
for the next task. Specifically, when the size of team g is larger than ct, we
abandon the task and go on to the next task.

Example 3. Back to our Example 1. In the first step the tasks are sorted as
{t2, t4, t1, t3}. For task t2, w3 has all the required skills. We add w3 to team g
and at this time the team size is smaller than 2. Thus, w5 is added to the team
for having the largest satisfaction for t2. Then for t4, we find worker w4 who has
the most required skills and add w4 into the team. Because w3 has participated
in t2, which conflicts with t4, we choose w2 to cover the last skills. At last the
team size equals to t4’s capacity. For t1 and t3, we run Algorithm 2 in a similar
way, and finally we get a team {w1, w2} for t1 and {w1} for t3. The final result
is presented in Table 5 and the total satisfaction is 20.

Complexity Analysis. For the two-step greedy algorithm, the time cost to sort
tasks and initialize the worker set is O(|T |ln(|T |)+ |W |). Then we traverse each
task to find a feasible team. Forming team g in lines 8–15 takes O(|E||W |) in
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Table 5. Result of Example 1

Worker w1 w2 w3 w4 w5

Plan {t1, t3} {t4, t1} {t2} {t4} {t2}

the worst case. Finally updating the workers’ attributes takes O(|W |). Therefore
the overall time cost of the algorithm is O(|T ||E||W |+ |T ||W |). The major space
cost of Algorithm 2 is from storing the set W ′, T and their associated attributes,
whose overall space cost is O(|W | + |T |).

Table 6. Synthetic datasets

Notation Value

|W | 1000,1500,2000,2500,3000

|T | 250,500,750,1000,1250

mean 4,6,8,10,12

factor 0.5,1,2,4,8

|Ew| 3,6,9,12,15

|Et| 5,10,15,20,25

5 Evaluation

In this section we conduct experiments on both synthetic and real-world datasets.
We use the dataset from gMission [4], a spatial crowdsourcing platform, as the
real-world dataset. In this dataset, we extract 1000 tasks, each of which is asso-
ciated with some descriptions introducing the details. Thus, the required skills
of the tasks can be extracted from the descriptions, and the worker’s skills are
learned from his/her history tasks. Table 6 shows the parameters of the synthetic
dataset, and the default values are shown in bold. In the synthetic dataset, the
numbers of workers |W | and tasks |T | are set between 1000–3000 and 250–1250,
respectively. According to the real-world dataset, we let the capacities of workers
follow the normal distribution, with the mean between 4–12. In terms of travel
budget Bw, we define a parameter factor to vary the travel budget. Then we have
Bw = mint∈T cost(lw, lt) + mint∈T cost(lw,lt)+maxt∈T cost(lw,lt)

2 ∗ factor, and we
vary factor from 0.5 to 8. Note that the moving distance of a worker is computed
in Euclidean distance and it can be easily extended to the road network distance
or other distance metrics. Both the numbers of workers’ skills |Ew| and tasks’
required skills |Et| follow the normal distribution and the means are between
3–15 and 5–20. In the real-world dataset, we still use Bw = mint∈T cost(lw, lt)+
mint∈T cost(lw,lt)+maxt∈T cost(lw,lt)

2 ∗factor as the budget of workers, because there
are no such parameters in the real-world dataset.
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Fig. 2. Results on varying |W |, |T |, and mean.

We evaluate both the Skill Cover and Utility Priority Algorithm (Algo-
rithm2), denoted as SCUP and the Rarest Skill Priority Algorithm (Algo-
rithm1), denoted as RSP. We compare these algorithms in terms of utility, time
and memory. When comparing utility, we only compute the satisfaction of the
completed tasks, whose skills are completely satisfied.

Effect of |W |. Figure 2a to c present the results of varying |W | in the synthetic
dataset. The total utility obtained from SCUP is much larger than that from
RSP. The running time and the memory cost of both SCUP and RSP are small
but increase with |W |. The memory of SCUP is smaller than that of RSP, because
RSP needs to store the worker-task pairs in the heap.

Effect of |T |. Figure 2d to f show the results of varying |T | in the synthetic
dataset. The utility of SCUP increases with |T |, and stables when |T | reaches
1000. This is because the number of workers and the travel budget Bw are
limited, so the workers cannot complete more tasks. The time cost of SCUP is
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Fig. 3. Results on varying factor, |Ew|, and |Et|.

smaller than that of RSP, and the memory cost of SCUP is approximately equal
to that of RSP. Tt is because SCUP spends more time to update the heap and
traverse the tasks and workers to find the rarest skill.

Effect of mean. Figure 2g to i depict the results of varying mean in the synthetic
dataset. SCUP performs better than RSP not only in total utility but also in
time and memory cost. This is because increasing mean of capacity enables the
tasks to accept more workers. Later the number of workers and the workers’
travel budget become the bottlenecks for total utility in SCUP. As for the utility
of RSP, the increasing mean of capacities increases the possibility of tasks to be
accomplished.

Effect of factor. Figure 3a to c present the results of varying factor in the
synthetic dataset. The influence of factor on SCUP is stronger than that of
RSP (see Fig. 3c). It might be because RSP attempts to cover the rarest skills
first, which disperses the workers to different tasks. Thus the utility of RSP
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increases slowly at the beginning, and increases much faster when the travel
budget of workers becomes abundant.

Effect of |Ew|. Figure 3d to f show the results of varying |Ew| in the synthetic
dataset. When the workers possess more skills, the possibility of choosing workers
with satisfaction for tasks increases. SCUP spends less time to cover the required
skills, which results in decreased time cost. Conversely, RSP has to traverse more
skills for each worker, which leads to higher time cost.

Effect of |Et|. Figure 3g to i demonstrate the results of varying |Et| in the syn-
thetic dataset. When |Et| increases, the utility of both RSP and SCUP decreases
because more workers are needed to satisfy the skill requirements. Due to the
extra effort for searching workers to cover the skills, the time and the memory
cost also increase with |Et|.
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Fig. 4. Results on real datasets.

Effect of |W | in Real Dataset. Finally Fig. 4a to c show the results of varying
|W | in the real-world dataset. When |W | increases, the utility of SCUP increases
fast at the beginning. When |W | reaches 2000, the utility stabilizes, since the
tasks are consumed. For RSP, the utility exhibits a similar but less dynamic
trend to SCUP. The memory costs of the two algorithms are approximately the
same. The time costs of both algorithms are small.

Summary. SCUP outperforms RSP in utility in various scenarios. One reason
is that when making an assignment between workers and tasks owning/requiring
the rarest skill, the tasks’ capacities are consumed but only few skills are sat-
isfied. Therefore some tasks’ skill requirements cannot be completely satisfied.
In contrast, SCUP attempts to cover the skills with a small team of workers,
which ensures that the task are actually accomplished. Furthermore, SCUP also
outperforms RSP in time and memory.

6 Conclusion

In this paper, we introduce Team-Oriented Task Planning (TOTP) problem, a
realistic planning problem in spatial crowdsourcing which attempts to assign
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workers to suitable tasks. Different from previous research, it also takes into
account the skill requirements of tasks on workers. We prove that TOTP is NP-
hard, and propose two heuristic algorithms to solve the TOTP problem. Finally
we conduct experiments on both synthetic and real-world datasets and verify
the effectiveness and the efficiency of the proposed algorithms.
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